Abstract

AbstractThis work describes the preparation of a selective receptor for the rapid, selective and sensitive electrochemical flow injection analysis of carbofuran in foods using air stable lipid films supported on a methacrylate polymer on a glass fiber filter with incorporated artificial receptor. The selective receptor was synthesized by transformation of the OH groups of resorcin[4]arene receptor into phosphoryl groups. These lipid films were supported on a methylacrylate polymer (i.e., methacrylic acid was the functional monomer for the polymerization, ethylene glycol dimethacrylate was used as the crosslinker and 2,2′‐azobis‐2‐methylpropionitrile as an initiator). A minisensor device was constructed for the electrochemical flow injection analysis of toxicants based on air stabilized lipid films supported on a polymer. The device can sense the analyte in a drop (50 μL) of sample. Carbofuran was injected into flowing streams of a carrier electrolyte solution. A host‐guest complex formation between the calix[4]arene phosphoryl receptor and carbofuran takes place through hydrogen bonding. This enhances the preconcentration of carbofuran at the lipid membrane surface which in turn causes dynamic alterations of the electrostatic fields and phase structure of membranes; as a result ion current transients were obtained and the magnitude of these signals was correlated to the substrate concentration. The response times were ca. 80 s and carbofuran was determined at concentration levels of nM. The effect of potent interferences included a wide range of compounds and other insecticides. The effect of interference of proteins and lipids was also examined. The reproducibility of the method was checked by recovery experiments in fruit and vegetable samples with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.