Abstract

The ability to monitor dynamic changes in neuropeptide Y (NPY) levels in complex environments can have an impact on many fields, including neuroscience and immunology. Here, we describe the development of an electrochemical, aptamer-based (E-AB) sensor for the dynamic (reversible) measurement of physiologically relevant (nanomolar) concentrations of neuropeptide Y. The E-AB sensors are fabricated using a previously described 80 nucleotide aptamer1 reported to specifically bind NPY with a binding affinity Kd = 0.3 ± 0.2 uM. We investigated two redox tag placement locations on the aptamer sequence (terminal vs internal) and various sensor fabrication and interrogation parameters to tune the performance of the resulting sensor. The best-performing sensor architecture displayed a physiologically relevant dynamic range (nM) and low limit of detection and is selective among competitors and similar molecules. The development of this sensor accomplishes two breakthroughs: first, the development of a nonmicrofluidic aptamer-based electrochemical sensor that can detect NPY on a physiologically relevant (seconds to minutes) time scale and across a relevant concentration range; second, the expansion of the range of molecules for which an electrochemical, aptamer-based sensor can be used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.