Abstract

Vohradsky has proposed a neural network model to describe biochemical networks. Based on this model, several researchers have proposed genetic network inference methods. When trying to analyze large-scale genetic networks, however, these methods must solve high-dimensional function optimization problems. In order to resolve the high-dimensionality in the estimation of the parameters of the Vohradsky's neural network model, this study proposes a new method. The proposed method estimates the parameters of the neural network model by solving two-dimensional function optimization problems. Although these two-dimensional problems are non-linear, their low-dimensionality would make the estimation of the model parameters easier. Finally, we confirm the effectiveness of the proposed method through numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.