Abstract

One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call