Abstract

Automated steering control is a crucial element of vehicle automation. The California PATH Program at the University of California at Berkeley has developed one such system using magnetic markers embedded under the roadway for lateral guidance. This system was demonstrated during the August 1997 National Automated Highway System Consortium Feasibility Demonstration, San Diego, CA, without a single failure. Developing a successful demonstration system not only required theoretical understanding of the various control problems involved, but also strong appreciation of all practical issues. In the paper, the comprehensive process of developing such automated steering control system is described. This process consists of control objectives' determination, system structure definition, vehicle dynamics validation, lateral sensing system development, steering actuator design, test track installation, control algorithm development, software/hardware integration, and vehicle testing. The entire process also serves as a good case study for mechatronic system design integrating mechanical components, electronic devices, intelligence, and feedback control to perform vehicle automation functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.