Abstract
Meticulous postoperative flap monitoring is essential for preventing flap failure and achieving optimal results in free flap operations, for which physical examination has remained the criterion standard. Despite the high reliability of physical examination, the requirement of excessive use of clinician time has been considered a main drawback. To develop an automated free flap monitoring system using artificial intelligence (AI), minimizing human involvement while maintaining efficiency. In this prognostic study, the designed system involves a smartphone camera installed in a location with optimal flap visibility to capture photographs at regular intervals. The automated program identifies the flap area, checks for notable abnormalities in its appearance, and notifies medical staff if abnormalities are detected. Implementation requires 2 AI-based models: a segmentation model for automatic flap recognition in photographs and a grading model for evaluating the perfusion status of the identified flap. To develop this system, flap photographs captured for monitoring were collected from patients who underwent free flap-based reconstruction from March 1, 2020, to August 31, 2023. After the 2 models were developed, they were integrated to construct the system, which was applied in a clinical setting in November 2023. Conducting the developed automated AI-based flap monitoring system. Accuracy of the developed models and feasibility of clinical application of the system. Photographs were obtained from 305 patients (median age, 62 years [range, 8-86 years]; 178 [58.4%] were male). Based on 2068 photographs, the FS-net program (a customized model) was developed for flap segmentation, demonstrating a mean (SD) Dice similarity coefficient of 0.970 (0.001) with 5-fold cross-validation. For the flap grading system, 11 112 photographs from the 305 patients were used, encompassing 10 115 photographs with normal features and 997 with abnormal features. Tested on 5506 photographs, the DenseNet121 model demonstrated the highest performance with an area under the receiver operating characteristic curve of 0.960 (95% CI, 0.951-0.969). The sensitivity for detecting venous insufficiency was 97.5% and for arterial insufficiency was 92.8%. When applied to 10 patients, the system successfully conducted 143 automated monitoring sessions without significant issues. The findings of this study suggest that a novel automated system may enable efficient flap monitoring with minimal use of clinician time. It may be anticipated to serve as an effective surveillance tool for postoperative free flap monitoring. Further studies are required to verify its reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.