Abstract

An atomic-oxygen-erosion-resistant fluorinated benzoxazine resin and composite were developed. The benzoxazine resin, abbreviated as "BAF-oda-fu," consists of four benzoxazine rings, and was synthesized from bisphenol AF (BAF), 4,4'-oxydianiline (oda), furfurylamine (fu), and paraformaldehyde. The resin was characterized by infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). An analysis of the solvent-washed product showed a technical grade purity (>95%) and a yield of approximately 85%. Subsequent polymerization of the resin was successfully performed by heating step-wise and opening the benzoxazine rings to form a crosslinked network. Thermal analyses showed a melting temperature of 115 °C and polymerization temperature of 238 °C, both being characteristic values of benzoxazine monomers. The benzoxazine resin was also blended with polyoctahedral sisesquoxane (POSS) and reinforced with alumina fibers. The Tg of the resin, as determined by DMA of the composite, could reach as high as 308 °C when post-curing and the POSS additive were utilized. The low-Earth orbit atomic-oxygen erosion rate was simulated by an RF plasma asher/etcher. The atomic-oxygen resistance of poly(BAF-oda-fu) fell along an established trend line based on its fluorine content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call