Abstract
In this work we document the development of an ASR system for the transcription of conversations between patient and doctor and we will point out the critical aspects of the domain. The system was trained with an acoustic base of spontaneous speech that has a domain language model and a supervised phonetic dictionary. Its performance was compared with two systems: a) NeMo End-to-End Conformers in Spanish and b) Google API ASR (Automatic Speech Recognition) Cloud. The evaluation was carried out on a set of 208 teleconsultations recorded during the year 2020. The WER (Word Error Rate) was evaluated in ASR, and Recall and F1 for recognized medical entities. In conclusion, the developed system performed better, reaching 72.5% accuracy in the domain of teleconsultations and an F1 for entity recognition of 0.80.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.