Abstract

Homogenized macroscopic cross-sections (XS) are necessary for running core-wise nodal diffusion calculations. XS sets are usually generated using time-consuming lattice physics codes. In this study, a pre-trained artificial neural network was developed and used for XS generation. The model was trained to produce macroscopic XS, pin powers, and assembly discontinuity factors for 16 × 16 and 17 × 17 fuel assembly types with independent variable enrichments of each fuel pin loaded with fresh UO2 fuel without burnable poisons. The training dataset optimization method was described and used for defining the required number of variations in input parameters, such as pin arrangements and thermal hydraulics parameters. The optimized dataset's generation took only 248 core-hours, which is below 3 days on a modern 4-core CPU. For the worst-case out-of-range testing data, the maximum observed difference with the reference was found below 3% for pin powers, and below 4.5% for XS values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.