Abstract
A poly vinyl chloride (PVC) gel actuator shows great potential for use as an artificial muscle because of such positive characteristics as movement in the air, large deformation, and being light in weight. A bending type actuator using PVC gel was studied previously. In order to construct an artificial muscle it is necessary to compose an actuator which has the characteristics of contraction type deformation. In the present paper we propose an electrode arrangement for a contraction type actuator using PVC gel. Also, we investigate the characteristics of the proposed actuator experimentally and show the effectiveness of the actuator as an artificial muscle. The experimental results showed that the contraction strain of the actuator was about 14%, the response rate was 7Hz, and the output stress was 4kPa. In order to apply the artificial muscle as a control element, we build a linear mathematical model of the electronic and mechanical characteristics. Based on the mathematical model, we design a control law of the PVC gel actuator. The control law is applied to the position control of the artificial muscle experimentally. The experimental results showed a good agreement with the simulated results using the mathematical model and an excellent performance in position control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.