Abstract
High-resolution CT (HRCT) imaging features of idiopathic interstitial pneumonia (IIP) patients are related to glucocorticoid sensitivity. This study aimed to develop an artificial intelligence model to assess glucocorticoid efficacy according to the HRCT imaging features of IIP. The medical records and chest HRCT images of 150 patients with IIP were analyzed retrospectively. The U-net framework was used to create a model for recognizing different imaging features, including ground glass opacities, reticulations, honeycombing, and consolidations. Then, the area ratio of those imaging features was calculated automatically. Forty-five patients were treated with glucocorticoids, and according to the drug efficacy, they were divided into a glucocorticoid-sensitive group and a glucocorticoid-insensitive group. Models assessing the correlation between imaging features and glucocorticoid sensitivity were established using the k-nearest neighbor (KNN) algorithm. The total accuracy (ACC) and mean intersection over union (mIoU) of the U-net model were 0.9755 and 0.4296, respectively. Out of the 45 patients treated with glucocorticoids, 34 and 11 were placed in the glucocorticoid-sensitive and glucocorticoid-insensitive groups, respectively. The KNN-based model had an accuracy of 0.82. An artificial intelligence model was successfully developed for recognizing different imaging features of IIP and a preliminary model for assessing the correlation between imaging features and glucocorticoid sensitivity in IIP patients was established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.