Abstract

The majority of future large-scale neutrino and dark matter experiments are based on liquid argon detectors. Since liquid argon is also a very effective scintillator, these experiments also have light detection systems. The liquid argon scintillation wavelength of 127 nm is most commonly shifted to the visible range by special wavelength shifters or read out by the 127 nm sensitive photodetectors that are under development. The effective calibration and quality control of these active media is still a persisting problem. In order to respond to this need, we developed an argon light source which is based on plasma generation and light transfer across a MgF2 window. The light source was designed as a small, portable and easy-to-operate device to enable the acquisition of performance characteristics of several square meters of light detectors. Here, we report on the development of the light source and its performance characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.