Abstract

The annelid, which consists of several identical segments, exploits its soft structures to move effectively in complex natural environments. Elongation and shortening of different segments produce a reverse peristaltic wave while retractable setae generate a variable friction, enabling bidirectional crawling locomotion. Although several designs have applied soft technologies towards the construction of annelid-like robots, these robots do not exhibit the homonymous segmentation, reverse peristaltic wave and variable friction. This paper reports the development of an annelid-like soft robot based on an improved dielectric elastomer (DE) minimum energy structure actuator to have these annelidan features. Each biomimetic segment of the robot is supported by a polyethylene terephthalate (PET) frame adhered to the DE actuator. The DE actuator induces segment elongation or shortening, which causes silica gel pads attached to the PET frame to contact or separate from the ground, producing a variable friction. The designed robot, whose identical segments conform to the homonymous segmentation, achieves forward or backward movement via the cooperative efforts of all the biomimetic segments. This cooperative movement, which produces the reverse peristaltic wave, strongly resembles that of natural annelidan locomotion. In addition, the kinematic analysis of the robot is investigated. Experimental results confirm that the designed robot is capable of bidirectional and rapid locomotion. The robot can achieve a maximum velocity of 11.5 mm s−1 and a maximum velocity/mass ratio of 86.25 mm (min−1 g−1). Compared to other existing annelid-like soft robots, this designed robot exhibits a superior average velocity, velocity/length ratio, body length/cycle, and velocity/mass ratio, and its performance affords the best approximation to that of the natural annelid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call