Abstract

Analysis of an individual's total daily food intake may be used to determine aggregate dietary ingestion of given compounds. However, the resulting composite sample represents a complex mixture, and measurement of such can often prove to be difficult. In this work, an analytical scheme was developed for the determination of 12 select pyrethroid pesticides in dietary samples. In the first phase of the study, several cleanup steps were investigated for their effectiveness in removing interferences in samples with a range of fat content (1-10%). Food samples were homogenized in the laboratory, and preparatory techniques were evaluated through recoveries from fortified samples. The selected final procedure consisted of a lyophilization step prior to sample extraction. A sequential 2-fold cleanup procedure of the extract included diatomaceous earth for removal of lipid components followed with a combination of deactivated alumina and C(18) for the simultaneous removal of polar and nonpolar interferences. Recoveries from fortified composite diet samples (10 microg kg(-1)) ranged from 50.2 to 147%. In the second phase of this work, three instrumental techniques [gas chromatography-microelectron capture detection (GC-microECD), GC-quadrupole mass spectrometry (GC-quadrupole-MS), and GC-ion trap-MS/MS] were compared for greatest sensitivity. GC-quadrupole-MS operated in selective ion monitoring (SIM) mode proved to be most sensitive, yielding method detection limits of approximately 1 microg kg(-1). The developed extraction/instrumental scheme was applied to samples collected in an exposure measurement field study. The samples were fortified and analyte recoveries were acceptable (75.9-125%); however, compounds coextracted from the food matrix prevented quantitation of four of the pyrethroid analytes in two of the samples considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.