Abstract

In multivariate analysis, a predictive model is a mathematical/statistical model that relates a set of independent variables to dependent or response variable(s). This work presents a descriptive model that explains copper recovery from secondary sulfide minerals (chalcocite) taking into account the effects of time, heap height, superficial velocity of leaching flow, chloride concentration, particle size, porosity, and effective diffusivity of the solute within particle pores. Copper recovery is then modelled by a system of first-order differential equations. The results indicated that the heap height and superficial velocity of leaching flow are the most critical independent variables while the others are less influential under operational conditions applied. In the present study representative adjustment parameters are obtained, so that the model could be used to explore copper recovery in chloride media as a part of the extended value chain of the copper sulfides processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.