Abstract
Structures such as beams and plates can produce unwanted noise and vibration. An emerging technique can reduce noise and vibration without any additional weight or cost. This method focuses on creating two dimples in the same and opposite direction on a beam’s surface where the effect of dimples on its natural frequencies is the problem of interest. The change in the natural frequency between both cases have a different trend. The strategic approach to calculate natural frequencies is as follows: first, a boundary value model (BVM) is developed for a beam with two dimples and subject to various boundary conditions using Hamilton’s Variational Principle. Differential equations describing the motion of each segment are presented. Beam natural frequencies and mode shapes are obtained using a numerical solution of the differential equations. A finite element method (FEM) is used to model the dimpled beam and verify the natural frequencies of the BVM. Both methods are also validated experimentally. The experimental results show a good agreement with the BVM and FEM results. A fixed-fixed beam with two dimples in the same and opposite direction is considered as an example in order to compute its natural frequencies and mode shapes. The effect of dimple locations and angles on the natural frequencies are investigated. The natural frequencies of each case represent a greater sensitivity to change in dimple angle for dimples placed at high modal strain energy regions of a uniform beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.