Abstract

The development of a disposable amperometric biosensor for the measurement of circulating galactose in serum is described. The biosensor comprises a screen-printed carbon electrode (SPCE), incorporating the electrocatalyst cobalt phthalocyanine (CoPC), which is covered by a permselective cellulose acetate (CA) membrane and a layer of immobilized galactose oxidase (GALOX). The optimal response of the biosensor, designated as GALOX-CA-CoPC-SPCE, was obtained by systematically examining the effects of enzyme loading, temperature, pH, and buffer strength. The optimal performance of the biosensor occurred with 2U of GALOX, at 35°C, using 50mM phosphate buffer solution (pH 7.0). The sensitivity was 7.00μAmM−1cm−2 and the linear range from 0.1 to 25mM with a calculated limit of detection (LOD) of 0.02mM; this concentration range and LOD are appropriate to diagnose galactosemia, i.e., concentrations >1.1mM in infants. When the biosensor was used in conjunction with amperometry in stirred solution for the analysis of serum, the precision values obtained on unspiked (endogenous level of 0.153mM) and spiked serum (1mM added) (n=6) were 1.10% and 0.11%, respectively, with a calculated recovery of 99.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.