Abstract

ABSTRACTThe intracortical neural interface (INI) is a key component of brain machine interfaces (BMI) which offer the possibility to restore functions lost by patients due to severe trauma to the central or peripheral nervous system. Unfortunately today’s neural electrodes suffer from a variety of design flaws, mainly the use of non-biocompatible materials based on Si or W with polymer coatings to mask the underlying material. Silicon carbide (SiC) is a semiconductor that has been proven to be highly biocompatible, and this chemically inert, physically robust material system may provide the longevity and reliability needed for the INI community. The design, fabrication, and preliminary testing of a prototype all-SiC planar microelectrode array based on 4H-SiC with an amorphous silicon carbide (a-SiC) insulator is described. The fabrication of the planar microelectrode was performed utilizing a series of conventional micromachining steps. Preliminary data is presented which shows a proof of concept for an all-SiC microelectrode device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.