Abstract

Wood pellets are a kind of solid biomass energy and a renewable energy source. Made by compressing sawdust, wood pellets have a higher energy density than split firewood and wood chips. In 2007, the new and renewable energy (NRE) portion was 2.4% with respect to total primary energy in Korea. The Korean government wants to increase the new and renewable energy (NRE) portion up to 6.1% by 2020 [1]. To achieve this target, the government has been establishing some policies, such as incentive policy, NRE mandatory use for public building and renewable portfolio standard (RPS) and so on. To supply wood pellets as fuel for the combustion chamber of a wood pellet boiler, most domestic wood pellet boilers put a constant volume by using an auger type fuel feed system. In an auger system as fuel feeding, there is the possibility of changing energy input due to the different density of wood pellets even in a constant volume flow rate of wood pellets. If fuel input rate is changed without any correction of air flow rate for combustion, the condition of combustion in a wood pellet boiler can be deteriorated. We have developed an air-fuel control system for a domestic wood pellet boiler by using flue gas oxygen concentration measurement and a PID controller. To measure O2 concentration of flue gas, a wide band O2 sensor was adopted. We changed fuel input from 100% to 50% by artificial manipulation to confirm the control system. The O2 concentration in flue gas can be controlled to be 8.5% ± 1% without significant change of CO and NOx concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call