Abstract

Functional electrical stimulation (FES) has been a useful therapeutic tool in rehabilitation, particularly for people with paralysis. To deliver stimulation in its most basic setup, a stimulator and at least a pair of electrodes are needed. The electrodes are an essential part of the system since they allow the transduction of the stimulator signals into the body. Their performance can influence the experience of both patient and therapist in terms of movement generation, comfort, and ease of use. For non-invasive surface stimulation, current electrode options have several limitations involving their interfacing with the skin, practical inconveniences, and short-term functionality. Standard hydrogel electrodes tend to lose their adhesion with the skin quickly, while dry or textile electrodes require constant wetting to be comfortable. In this paper, we present the fabrication, characterization, and FES testing of a new aerogel-based wet electrode for surface stimulation applications for long-term and reusable FES applications. We investigated its functionality by stimulating the biceps brachii of twelve healthy individuals and collected elbow joint torque and comfort ratings for three different intensity levels (low, moderate, and high) of FES. Comparing to standard hydrogel electrodes, no statistically significant difference was found for any intensity of stimulation in either torque or comfort. Overall, the new aerogel-based electrode has an appropriate impedance, is flexible and soft, is conformable to the skin, has a high water absorption and retention, and can be used for FES purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call