Abstract

Increasing urban pollution levels have led to the imposition of evermore stringent emissions regulations on heavy-duty engines used in transit buses. This has made compressed natural gas (CNG) a promising fuel for reducing emissions, particularly particulate matter (PM) from heavy-duty transit buses. Indeed, research studies performed at West Virginia University (WVU) and elsewhere have shown that pre-2010 compliant natural gas engines emit an order of magnitude lower PM emissions, on a mass basis, when compared to diesel engines without any exhaust aftertreatment devices. However, on a number basis, particle emissions in the nanoparticulate range were an order of magnitude higher for natural gas fueled buses than their diesel counterparts. There exists a significant number of pre-2007 CNG powered buses in transit agencies in the US and elsewhere in the world. Therefore, an exhaust aftertreatment device was designed and developed by WVU, in association with Lubrizol, to retrofit urban transit buses powered by MY2000 Cummins Westport C8.3G+ heavy-duty CNG engines, and effectively reduce Toxic Air Contaminants (TAC) and PM (mass and number count) exhaust emissions. The speciation results showed that the new exhaust aftertreatment device reduced emissions of metallic elements such as iron, zinc, nonmetallic minerals such as calcium, phosphorus and sulfur derived from lube oil additives to non-detectable levels, which otherwise could contribute to an increase in number count of nanoparticles. The carbonyl compounds were reduced effectively by the oxidation catalyst to levels below what were found in the dilution air. Also, hydrocarbons identified as TAC’s by California Air Resource Board (CARB) [1] were reduced to non-detectable levels. This ultimately reduced the number of nanoparticles to levels equal to that found in the dilution air.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.