Abstract

Passive dynamic walking is a manner of walking developed, partially or in whole, by the energy provided by gravity. Studying passive dynamic walking provides insight into human walking and is an invaluable tool for designing energy efficient biped robots. The objective of this research was to develop a continuous mathematical model of passive dynamic walking, in which the Hunt-Crossley contact model and the LuGre friction model were used to represent the normal and tangential ground reactions. A physical passive walker was built to validate the proposed mathematical model. A traditional impact-based passive walking model was also used as a reference to demonstrate the advancement of the proposed passive dynamic walking model. The simulated gait of the proposed model matched the gait of the physical passive walker exceptionally well, both in trend and magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.