Abstract
A new type of tungsten inert gas (TIG) welding has been developed, in which an ultra-deep penetration is obtained. In order to control the Marangoni convection induced by the surface tension gradient on the molten pool, He gas containing a small amount of oxidizing gas was used. The effect of the concentration of O 2 and CO 2 in the shielding gas on the weld shape was studied for the bead-on-plate TIG welding of SUS304 stainless under He–O 2 and He–CO 2 mixed shielding gases. Because oxygen is a surface active element for stainless steel, the addition of oxygen to the molten pool can control the Marangoni convection from the outward to inward direction on the liquid pool surface. When the oxygen content in the liquid pool is over a critical value, around 70 ppm, the weld shape suddenly changes from a wide shallow shape to a deep narrow shape due to the change in the direction of the Marangoni convection. Also, for He-based shielding gas, a high welding current will strengthen both the inward Marangoni convection on the pool surface and the inward electromagnetic convection in the liquid pool. Accordingly, at a welding speed of 0.75 mm/s, the welding current of 160 A and the electrode gap of 1 mm under the He–0.4%O 2 shielding, the depth/width ratio reaches 1.8, which is much larger for Ar–O 2 shielding gas (0.7). The effects of the welding parameters, such as welding speed and welding current were also systematically investigated. In addition, a double shielding gas method has been developed to prevent any consumption of the tungsten electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.