Abstract

γ-Glutamyl transpeptidase (GGT) is a key biomarker for cancer diagnosis and post-treatment surveillance. Currently available methods for sensing GGT show high potential, but face certain challenges including an inability to be used to directly sense analytes in turbid biofluid samples such as whole blood without tedious sample pretreatment. To overcome this issue, activity-based electrochemical probes (GTLP and GTLPOH) were herein developed for a convenient and specific direct targeting of GGT activity in turbid biosamples. Both probes were designed to have GGT catalyze the hydrolysis of the gamma-glutamyl amide moiety of the probe, and result in a self-immolative reaction and concomitant ejection of the masked amino ferrocene reporter. The GTLPOH probe, delivered distinctive key results including high sensitivity, high affinity, a wide detection range of 2–100 U/L, and low LOD of 0.38 U/L against GGT. This probe delivered a precise target for sensing GGT and was free of interference from other electroactive biological species. Furthermore, the GTLPOH probe was employed to monitor and quantify the activity of GGT on the surfaces of tumor cells. The designed sensing method was also validated by the direct quantitative measurement of GGT activity in whole blood and urine samples, and the results were found to be consistent with those of the standard fluorometric assay kit. Thus, GTLPOH is of great significance for its promise as a point-of-care tool for early-stage cancer diagnosis as well as a new drug screening method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.