Abstract
This paper presents the development of a finger rehabilitation robot (FRR) for active and passive training to fulfill the requirements of different rehabilitation stages. In the design, an antagonistic pair of pneumatic muscles (PMs) are utilized to exert a bidirectional force for passive training, and a controllable magnetorheological (MR) damper is used to provide a damping force for active training. In this paper, first, a detailed illustration of the mechanical design of the FRR, including the driving, transmission and actuating mechanisms, and the damping device, is presented. Subsequently, the kinematic analysis and simulation are described, followed by the static and dynamic analysis of the designed FRR. This paper details the static force transfer of the transmission mechanism, and the establishment of dynamic equations for the passive training system. Finally, an experimental set-up is established, and several passive and active training experiments are conducted for the performance evaluation of the FRR prototype. The results validate the feasibility and stability of the developed FRR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.