Abstract

In the field of diagnosis and therapy of coronary artery disease, it is highly important to acquire a fair knowledge of the heart wall motion and its regional variations. Unfortunately, the accuracy of all currently applied methods for the acquisition and analysis of the regional heart wall motion is rather limited. We developed a sufficiently accurate technique for tracking and analysing the regional motion of the epicardium throughout the cardiac cycle which is based on cardiac CT and biplane angiography. In the end-diastolic position, the epicardial surface in the 3D CT data is segmented and registered to the skeleton representation of the coronary artery tree obtained from the end-diastolic frame of a biplane cineangiogram. In doing so, a landmark-based approach based on TPS transformations has been chosen. The motion tracking is accomplished by carrying out further landmark-based TPS transformations of the surface to the successive frames of the cineangiogram.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call