Abstract

ObjectiveTo determine the effect of exposure to remnants of a phagemid-containing E. coli, killed by treatment with a propanol-based hand rub, on antimicrobial resistance in E. coli isolates.MethodsAn in vitro model was developed in which a clinical E. coli isolate (EUR1) was exposed to remnants of an E. coli K-12 strain containing a phagemid (pBS-E12) strain treated with Sterillium®. A series of 200 experiments was performed using this in vitro model. As a control, a series of 400 experiments was performed where the EUR1 was exposed either to the remnants of an E. coli K-12 strain (not containing a phagemid) (E12) treated with Sterillium® (n = 200) or to dried Sterillium® only (n = 200). The number of experiments that showed growth of an amoxicillin-resistant EUR1 isolate was evaluated in all three groups. An additional 48 experiments were performed in which a different clinical E. coli isolate (EUR2) was exposed to remnants of the pBS-E12 treated with Sterillium®. Whole-genome sequencing and phenotypic testing for AmpC beta-lactamase production was performed to investigate the mechanism behind this resistance development.ResultsIn 22 (11.0%) of 200 experiments in which the EUR1 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained, as opposed to only 2 (1.0%) of 200 experiments involving the exposure of the EUR1 to Sterillium® only (risk difference: 10.0%; 95% CI 5.4–14.6%)) and 1 (0.5%) of 200 experiments involving the exposure of the EUR1 isolate to the remnants of the phagemid-free E12 (risk difference: 10.5%; 95% CI 6.1–14.9%). In 1 (2.1%) of the 48 experiments in which the EUR2 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained. The development of resistance in all experiments was due to mutations in the promoter/attenuator region of the chromosomal AmpC beta-lactamase (cAmpC) gene leading to cAmpC hyperproduction.ConclusionExposure of an E. coli isolate to another phagemid-containing E. coli that was treated with propanol-based hand rub increased the development of amoxicillin resistance. Although phagemids are cloning vectors that are not present in clinical isolates, this finding may have implications for hand disinfection practices in healthcare facilities.

Highlights

  • The last decades we have seen a dramatic worldwide increase in antimicrobial resistance (AMR) among Gram-negative bacteria

  • Exposure of an E. coli isolate to another phagemid-containing E. coli that was treated with propanolbased hand rub increased the development of amoxicillin resistance

  • We used an in vitro model to compare the rate at which amoxicillin-resistant mutants developed for an E. coli isolate exposed to amoxicillin and remnants of a pBleuscript KS(−) phagemid containing E. coli K-12 strain treated with Sterillium®, amoxicillin and remnants of a phagemid-free K-12 strain treated with Sterillium® or amoxicillin and dried Sterillium® only

Read more

Summary

Introduction

The last decades we have seen a dramatic worldwide increase in antimicrobial resistance (AMR) among Gram-negative bacteria. Not previously reported for E. coli, studies have already shown that in Salmonella spp. and Pseudomonas spp. the presence of external DNA could lead to an increase in the development of AMR through mechanisms other than transformation [22, 23] In this exploratory study, we used an in vitro model to compare the rate at which amoxicillin-resistant mutants developed for an E. coli isolate exposed to amoxicillin and remnants of a pBleuscript KS(−) phagemid containing E. coli K-12 strain treated with Sterillium®, amoxicillin and remnants of a phagemid-free K-12 strain treated with Sterillium® or amoxicillin and dried Sterillium® only

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call