Abstract

Although standard two-dimensional (2D) cell culture is an effective tool for cell studies, monolayer cultivation can yield imperfect or misleading information about numerous biological functions. In this study, we developed an alveolar-capillary exchange (ACE) chip aiming to simulate the cellular microenvironment at the alveolar-capillary interface. The ACE chip was designed with two chambers for culturing alveolar epithelial cells and vascular endothelial cells separately, which are separated by a microporous polycarbonate film that allows for the exchange of soluble biomolecules. Using this model, we further tested the toxic effects of fine particulate matter (PM2.5), a form of airborne pollutant known to induce adverse effects on human respiratory system. These effects are largely associated with the ability of PM2.5 to penetrate the alveoli, where it negatively affects the pulmonary function. Our results indicate that alveolar epithelial cells cultured in the ACE chip in solo and coculture with vascular endothelial cells underwent oxidative injury-induced apoptosis mediated via the PEAK-eIF2α signaling pathway of endoplasmic reticulum stress. The use of ACE chip in an alveolar epithelial cell-vascular endothelial cell coculture model revealed cellular vulnerability to PM2.5. Therefore, this chip provides a feasible surrogate approach in vitro for investigating and simulating the cellular microenvironment responses associated with ACE in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.