Abstract
The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (Sb2S3). The first one of the composites (binary) consists of Al. with 20% Silicon Carbide particles (SiCp) only. The other composite has SiCp and solid lubricants: Graphite + Sb2S3 (hybrid composite) at solid state. Both composites are fabricated through P/M route using “Hot powder perform forging technology”. The density and hardness are measured by usual methods. The pin-on-disc dry wear tests to measure the tribological properties are conducted for one hour at different parameters namely load: 30, 50 and 80N and speed: 5, 7 and 9m/s. The tested samples are examined using scanning electron microscope (SEM) for the characterization of microstructure and tribolayer on worn surface of composites. The results reveal that wear rate of hybrid composite is lower than that of binary composite. The wear rate decreased with the increasing load and increased with increasing speed. The results of the proposed composites are compared with iron based metal matrix composites (FM01N, FM02) at corresponding values of test parameters. These iron based metal matrix composites are also fabricated by P/M route using ‘Hot powder perform forging technology’. The comparative study reveals that the proposed composites have lower friction coefficient, less temperature rise and low noise level; however they have little higher wear rate. It is concluded that the hybrid composite has acceptable level of tribological characteristics with blacky and smooth worn surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Minerals and Materials Characterization and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.