Abstract
In respiratory diseases, the induction of allergic asthma is one of the hottest issues of international concern. The adjuvant effect of air pollutants including nanoparticles (NPs) has be pointed out to facilitate the occurrence and development of allergic asthma. This work studied the development of allergic asthma upon exposures of carbon black nanoparticles (CB NPs, 30–50 nm) and/or high environmental humidity (90% relative humidity). The mechanisms involved were investigated from perspectives of the activation of oxidative stress and transient receptor potential vanilloid 1 (TRPV1) pathways and the alteration in intestinal microbiota. Both high humidity and CB NPs aggravated the airway hyperreactivity, remodeling, and inflammation in Balb/c mice sensitized by ovalbumin. The co-exposure of these two risk factors exhibited adjuvant effect on the development of asthma likely through activating oxidative stress pathway and TRPV1 pathway and then facilitating type I hypersensitivity. Additionally, exposures of high humidity and/or CB NPs reduced the richness of intestinal microbes, altered microbial community composition, and weakened corresponding biological functions, which may interact with the development of asthma. The findings will add new toxicological knowledge to the health risk assessment and management of co-exposures of NPs and other risk factors in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.