Abstract

Four iridium(III) dyes functionalized with aldehyde functional group in the cyclometalating (C^N) ligands, bearing either diethyl [2,2′-bipyridine]-4,4′-dicarboxylate or tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate) anchoring groups, coded as Ir1–Ir4, are synthesized and explored as photosensitizers. The synthetic route is described and all of the complexes are characterized with respect to their electrochemical and photophysical properties. Density functional theory (DFT) calculation was used to gain insight into the factors responsible for the photocatalytic properties of Ir1–Ir4 as effective photosensitizers for photocatalytic hydrogen generation. Relative to common iridium(III) dyes, such as [Ir(ppy)2(dcbpy)]+ (ppy = 2-phenylpyridine), the absorption spectra of our dyes are broader, which is attributed to the extended π-conjugation in their C^N ligands. All of the new iridium(III) dyes were used as photosensitizers for visible-light driven hydrogen production by attaching to platinized TiO2 nanoparticles (Pt–TiO2) in the presence of sacrificial electron donor (SED) of ascorbic acid (AA) in a purely aqueous solution. A H2 turnover number (TON) up to 5809 was demonstrated for 280 h irradiation. Complexes with tetraethyl [2,2′-bipyridine]-4,4′-diylbis(phosphonate) anchoring groups were found to outperform those with classical diethyl [2,2′-bipyridine]-4,4′-dicarboxylate, which may be one of the important steps in developing high-efficiency iridium(III) photosensitizers in water splitting hydrogen generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.