Abstract
Atomic layer deposition (ALD) is a well-known technique for the fabrication of ultrathin and highly conformal barrier coatings which have extensively been used for the protection of electronic devices in open atmospheric conditions. Here, we extend the scope for the application of low-temperature-deposited plasma-enhanced ALD barrier coatings for the protection of devices in a variety of chemical environments. The chemical stability tests were conducted in 3.5% NaCl, sea water, HCl (pH 4), and H2SO4 (pH 4) solutions for ALD Al2O3, HfO2, TiO2, and ZrO2, deposited at 100 °C on TiO2-coated Au and ALD ZnO (photoactive)-coated Si substrates. Using electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) study, various aspects of the barrier properties and performance of ALD films in harsh chemical environments were explored. We demonstrate that the combined approach involving EIS and PL provides unique insights into the suitability of ALD films as barriers in harsh environments involving ionic solutions. The observations from EIS and PL tests are supported by the X-ray photoelectron spectroscopy analysis of ALD materials. Of the materials tested, ALD TiO2 and ZrO2 were found to be the most stable, chemically, in all four solutions, whereas TiO2 was a better permeation barrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.