Abstract
Aluminum rich intermetallic particles are potential reinforcements for discontinuously reinforced aluminum matrix composites (DRAMCs). The objective of the present work is to produce AA6061/Al3Ti and AA6061/Al3Zr composites using in situ casting technique and applying friction stir processing (FSP) to enhance the distribution and morphology of Al3Ti and Al3Zr particles. AA6061/Al3Ti and AA6061/Al3Zr DRAMCs were produced by the in situ reaction of inorganic salts K2TiF6 and K2ZrF6 with molten aluminum. The microstructure was observed using optical and scanning electron microscopy. AA6061/Al3Ti DRAMC exhibited clusters of Al3Ti particles while the segregation of needle shape Al3Zr particles was observed in AA6061/Al3Zr DRAMC. The prepared composites were subjected to FSP. Significant changes in the distribution and morphology of Al3Ti and Al3Zr particles were observed after FSP. The changes in microhardness and sliding wear behavior of AA6061/Al3Ti and AA6061/Al3Zr DRAMCs before and after FSP is detailed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.