Abstract
In this paper, the novel multi-layer composite seals for planar solid oxide fuel cells are studied. The composite seals with sandwiched structure include Al2O3-based tape as support and glass-ceramic slurry as binder connecting the interface of the neighboring components. The result finds out that glass-ceramic slurry with 20 wt% Al2O3 has the suitable strength and deformability. The thermal cycle characteristics are greatly improved by using the multi-layer composite seals, and the corresponding leakage rates are lower than 0.025 sccm cm−1 for 20 thermal cycles at the inlet pressure ranging from 0.5 psi to 2 psi. SEM investigations show a very compact and good adhesion between the neighboring components, which can minimize the leakage paths. Single cell testing is used to examine the performance of the seals. The value of open circuit voltage is 1.17 V. At the constant discharge current density of 0.37 A cm−2, the voltage is stabilized at about 0.85 V for 50 h. The results demonstrate that the novel multi-layer composite seals are good candidate for SOFC application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.