Abstract

Crack inspection is important to monitor the structural health of pavement structures and make the repair process easier. Currently, pavement crack inspection is conducted manually, which is inefficient and costly at the same time. To solve the problem, this work has developed a robotic system for automated data collection and analysis in real-time. The robotic system navigates the pavement and collects visual images from the surface. A deep-learning-based semantic segmentation framework named RCDNet was proposed. The RCDNet was implemented on the onboard computer of the robot to identify cracks from the visual images. The encoder-decoder architecture was utilized as the base framework of the proposed RCDNet. The RCDNet comprises a dual-channel encoder and a decoder module. The encoder and decoder parts contain a context-embedded channel attention (CECA) module and a global attention module (GAM), respectively. Simulation results show that the deep learning model obtained 96.29% accuracy for predicting the images. The proposed robotic system was tested in both indoor and outdoor environments. The robot was observed to complete the inspection of a 3 m × 2 m grid within 10 min and a 2.5 m × 1 m grid within 6 min. This outcome shows that the proposed robotic method can drastically reduce the time of manual inspection. Furthermore, a severity map was generated using the visual image results. This map highlights areas that require greater attention for repair in the test grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call