Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their effect by inhibiting the target enzyme cyclooxygenase (prostaglandin H2 synthase); however, little is known about the peptides comprising its NSAID binding site. Hydroxyprostaglandin dehydrogenases also bind NSAIDs, but their NSAID binding sites have not been well characterized. Using existing synthetic strategies, we have incorporated the bromoacetoxy affinity labeling moiety around the perimeter of two potent NSAIDs, indomethacin and mefenamate, a N-phenylanthranilate. The compounds synthesized were 1-(4-(bromoacetamido)benzyl)-5-methoxy-2-methylindole-3-acetic acid (1), 3-(2-(2-bromoacetoxy)ethyl)-1-(4-chlorobenzyl)-5-methoxy-2-methylindole (2), 4-(bromoacetamido)-N-(2,3-dimethylphenyl)anthranilic acid (3), N-(3-(bromoacetamido)phenyl)-anthranilic acid (4), and N-(4-(bromoacetamido)phenyl)anthranilic acid (5). To access whether these compounds have general utility in labeling NSAID binding sites, the compounds were evaluated as affinity labeling agents for 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from rat liver cytosol. This enzyme displays 9-, 11-, and 15-hydroxyprostaglandin dehydrogenase activity, is inhibited potently by NSAIDs, and is homologous to bovine lung prostaglandin F synthase. Compounds 1-5 were shown to affinity label the NSAID binding site of 3 alpha-HSD. They inactivated 3 alpha-HSD through an E.I complex in a time- and concentration-dependent manner with t1/2 values ranging from seconds to hours. Ligands that compete for the active site of 3 alpha-HSD (NAD+ and indomethacin) afforded protection against inactivation, and the inactivators could demonstrate competitive kinetics against 3 alpha-hydroxysteroid substrates by forming an E.NAD+.I complex.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.