Abstract

Aerostatic porous bearings have been applied widely in precision devices to achieve higher accuracy of motion. Conventional aerostatic porous bearings are made of porous graphite, porous ceramics or sintered metal porous material, having a thickness of several millimetres and a surface-restricted layer. However, during mass production of porous bearings, the time required for the production of the porous materials and the surface restriction treatment leads to an increase in the manufacturing time and cost of the porous bearings. Accordingly, to overcome this problem, an aerostatic porous bearing with a layer thickness of several hundred µm and a support member, manufactured using metal 3D printing technology, is proposed. In this study, the optimum conditions for manufacturing the proposed aerostatic porous bearings with a direct metal laser sintering method 3D printer were investigated, and characteristics of the prototype of the proposed bearings were investigated experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.