Abstract
Determination of small-molecule API (Active Pharmaceutical Ingredient) solubility in solvents is of great importance for drug development in pharmaceutical industry. This study uses machine learning algorithms to predict the solubility of phenytoin drug and density of the solvent at different pressure and temperature. In fact, the solubility of drug (y) and the density of supercritical CO2 (Sc-CO2) were investigated as functions of temperature (T) and pressure (P). Three regression models, namely Gaussian Process Regression (GPR), Gamma Regression (GR), and K-nearest neighbor (KNN) were employed to predict the output variables. To optimize the performance of these models, the Directional Bat Algorithm (dBA) was utilized for hyper-parameter tuning. The outputs demonstrated the accuracy of the developed models in predicting the Sc-CO2 density and solubility of phenytoin. Among the models, GPR exhibited the highest accuracy for both outputs, achieving an R2 value of 0.99 for the solvent density and 0.999 for the solubility. The root mean square error (RMSE) for Sc-CO2 density was approximately 18.37, with an average absolute relative deviation percentage (AARD%) of 4.07% and a maximum error of 37.42. For solubility, the RMSE was approximately 0.087, with an AARD% of 2.29% and a maximum error of 0.150.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.