Abstract

'This report evaluates the first year''s results of the research on the development of advanced electrochemical sensors for use in high subcritical and supercritical aqueous environments. The work has emphasized the designing of an advanced reference electrode, and the development of high-temperature pH and redox sensors for characterizing the fundamental properties of supercritical aqueous solutions. Also, electrochemical noise sensors have been designed for characterizing metal/water interactions, including corrosion processes. A test loop has been designed and constructed to meet the expected operation conditions. The authors have also developed an approach to define a practical pH scale for use with supercritical aqueous systems and an operational electrochemical thermocell was tested for pH measurements in HCl + NaCl aqueous solutions. The potentials of the thermocell for several HCl(aq) solutions of different concentrations have been measured over wide ranges of temperature from 25 to 400 C and for flow rates from 0.1 to 1.5 cm min{sup -1} . The corresponding pH differences ({Delta}pH) for two HCl(aq) concentrations in 0.1 NaCl(aq) solution have been experimentally derived and thermodynamically analyzed. Their first experimental measurements, and subsequent theoretical analysis, clearly demonstrate the viability of pH measurements in high subcritical and supercritical aqueous solutions with a high accuracy of \2610.02 to 0.05 units.'

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.