Abstract

The Japan Sodium-cooled Fast Reactor (JSFR) has adopted an in-vessel fuel handling system that consists of a single rotating plug, an upper inner structure (UIS) with a vertically penetrating slit, and a fuel handling machine (FHM) with a pantograph arm enhancing a compact reactor vessel design. Since the reactor vessel design depends on the in-vessel fuel handling system, the feasibility of the JSFR compact reactor vessel design is directly related to the feasibility of the new FHM. In this study, we have fabricated a full-scale mock-up of the JSFR FHM and performed tests in air. From the tests, the FHM mock-up shows sufficient performance in terms of positioning accuracy, motion speed, and stiffness to ensure durability for practical use in commercial plants. Structural analyses have been conducted to validate and improve the seismic analysis model and the positioning control of the FHM. The numerical results are in good agreement with the vibration and positioning tests, showing that there is a sufficient possibility that the model has enough performance to conduct seismic analysis and improve positioning accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call