Abstract

Aim: Regenerative and curative strategies would be desirable for neurodegenerative and adrenal diseases, and multipotent adrenal stem cells are considered as promising biological tools for this purpose. Stem-like cells with the potential to proliferate and differentiate in vivo and in vitro were discovered in both cortex and medulla of the adrenal gland. Previously, it was demonstrated that nestin-positive progenitors in the cortex and medulla, play an important role under stress. In the present study, the cultivation of these cells was optimized and their growth in vitro was characterized. Methods: Primary cells from the adrenal cortex and medulla from Nes-GFP mice were isolated and the in vitro culture conditions promoting the growth of stem and progenitor cells using different 3-dimensional (3D) spheroid culture models were optimized. Results: Both cortical and medullary cells could be cultured for at least one month under several different low-adherence conditions maintaining their viability and potential to differentiate. Medullary cells grew faster than cortical cells. Endothelin did not affect the cultures. Conclusions: Adrenomedullary and adrenocortical nestin-positive progenitor cells can be cultured long-term in 3D cultures maintaining their proliferation and differentiation capabilities. Such multidimensional models can potentially be used for drug screening to develop personalized medicines or for transplantation to treat neurodegenerative disorders or adrenal diseases, such as adrenal insufficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call