Abstract

Active matrix flat-panel imagers (AMFPIs) offer many advantages and have become ubiquitous across a wide variety of medical x-ray imaging applications. However, for mammography, the imaging performance of conventional AMFPIs incorporating CsI:Tl scintillators or a-Se photoconductors is limited by their relatively modest signal-to-noise ratio (SNR), particularly at low x-ray exposures or high spatial resolution. One strategy for overcoming this limitation involves the use of a high gain photoconductor such as mercuric iodide (HgI2) which has the potential to improve the SNR by virtue of its low effective work function (WEFF). In this study, the performance of direct-detection AMFPI prototypes employing relatively thin layers of polycrystalline HgI2 operated under mammographic irradiation conditions over a range of 0.5 to 16.0 mR is presented. High x-ray sensitivity (corresponding to WEFF values of ∼19 eV), low dark current (<0.1 pA mm−2) and good spatial resolution, largely limited by the size of the pixel pitch, were observed. For one prototype, a detective quantum efficiency of ∼70% was observed at an x-ray exposure of ∼0.5 mR at 26 kVp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.