Abstract

The design, construction, and development of micro-turbines using 3D printing has been an important advance in the wind energy field to explore the possibility of offering viable alternative for the electric power generation, reducing the pollution caused by fossil fuels. In this work, a five blade vertical axis wind turbine prototype was tested. The components were designed using CAD and the turbine was manufactured by additive technology in a 3D printer. The material employed for 3D printing was commercial polylactic acid. The mechanical properties of the material used were obtained by tensile tests under the ASTM D-638 standard. On the other hand, a static structural simulation was performed by finite element method. Maximum tensile stress safety factor, maximum principal stresses, and fatigue analyses of the main turbine components were computed. The turbine performance as function of rotational velocity and relative wind velocity was analyzed implementing an experimental set-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.