Abstract

It is an urgent need to develop novel antibiotics to treat infections caused by multi-drug-resistant bacteria. One promising strategy could be the use of whole-cell biosensors, which have been extensively studied to monitor environmental pollutants and intracellular metabolites. Here, we used the σM-mediated regulatory system of Bacillus subtilis to construct a whole-cell biosensor for the detection of cell envelope-acting antibiotics. Using polymyxin B as the inducer for bacterial cell envelope stress and enhanced green fluorescent protein (EGFP) as the reporter, we found that the promoter of ypuA (PypuA) had the lowest background noise and the most significant changes in the fluorescence output. The whole-cell biosensor displayed dose-dependent and time-dependent responses in fluorescence signals. The detection range of this biosensor for polymyxin B was between 0.125 and 12μg/mL. The response of the biosensor is specific to antibiotics that target the cell envelope. Besides determination in liquid cultures, the output signal of the biosensor can be easily determined on agar surfaces. Using this biosensor, we successfully detected polymyxins secreted by its producing strain and bacteria that produce cell envelope-acting antibiotics. KEY POINTS: • A whole-cell biosensor was constructed based on the σM-mediated regulatory system. • The response of the biosensor is specific to cell envelope-acting antibiotics. • The biosensor can be used to screen novel cell envelope-acting antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.