Abstract

BackgroundIndividual pharmacokinetic assessment is a critical component of tailored prophylaxis for hemophilia patients. Population pharmacokinetics allows using individual sparse data, thus simplifying individual pharmacokinetic studies. Implementing population pharmacokinetics capacity for the hemophilia community is beyond individual reach and requires a system effort.ObjectiveThe Web-Accessible Population Pharmacokinetic Service—Hemophilia (WAPPS-Hemo) project aims to assemble a database of patient pharmacokinetic data for all existing factor concentrates, develop and validate population pharmacokinetics models, and integrate these models within a Web-based calculator for individualized pharmacokinetic estimation in patients at participating treatment centers.MethodsIndividual pharmacokinetic studies on factor VIII and IX concentrates will be sourced from pharmaceutical companies and independent investigators. All factor concentrate manufacturers, hemophilia treatment centers (HTCs), and independent investigators (identified via a systematic review of the literature) having on file pharmacokinetic data and willing to contribute full or sparse pharmacokinetic data will be eligible for participation. Multicompartmental modeling will be performed using a mixed-model approach for derivation and Bayesian forecasting for estimation of individual sparse data. NONMEM (ICON Development Solutions) will be used as modeling software.ResultsThe WAPPS-Hemo research network has been launched and is currently joined by 30 HTCs from across the world. We have gathered dense individual pharmacokinetic data on 878 subjects, including several replicates, on 21 different molecules from 17 different sources. We have collected sparse individual pharmacokinetic data on 289 subjects from the participating centers through the testing phase of the WAPPS-Hemo Web interface. We have developed prototypal population pharmacokinetics models for 11 molecules. The WAPPS-Hemo website (available at www.wapps-hemo.org, version 2.4), with core functionalities allowing hemophilia treaters to obtain individual pharmacokinetic estimates on sparse data points after 1 or more infusions of a factor concentrate, was launched for use within the research network in July 2015.ConclusionsThe WAPPS-Hemo project and research network aims to make it easier to perform individual pharmacokinetic assessments on a reduced number of plasma samples by adoption of a population pharmacokinetics approach. The project will also gather data to substantially enhance the current knowledge about factor concentrate pharmacokinetics and sources of its variability in target populations.Trial RegistrationClinicalTrials.gov NCT02061072; https://clinicaltrials.gov/ct2/show/NCT02061072 (Archived by WebCite at http://www.webcitation.org/6mRK9bKP6)

Highlights

  • We have developed prototypal population pharmacokinetics models for 11 molecules

  • The project will gather data to substantially enhance the current knowledge about factor concentrate pharmacokinetics and sources of its variability in target populations

  • Hemophilia A and B are X chromosome–linked bleeding disorders caused by mutations in the factor VIII (FVIII) and factor IX (FIX) genes

Read more

Summary

Introduction

Hemophilia A and B are X chromosome–linked bleeding disorders caused by mutations in the factor VIII (FVIII) and factor IX (FIX) genes. Both factors take part in the intrinsic pathway of blood coagulation. Moderate, or mild forms of the diseases, defined by factor plasma levels of 1% or less, 2% to 5%, and 6% to 40%, respectively. Both hemophilia A and B are rare diseases; the prevalence of hemophilia A is 1 in 5000 male live births and that of hemophilia B is 1 in 30,000 [1,2]. Implementing population pharmacokinetics capacity for the hemophilia community is beyond individual reach and requires a system effort

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call