Abstract

Clinical devices play a vital role in diagnosing and monitoring people’s health. A pulse oximeter (PO) is one of the most common clinical devices for critical medical care. In this paper, we explain how we developed a wearable PO. We propose a new electronic circuit based on an analog filter that can separate red and green photoplethysmography (PPG) signals, acquire clean PPG signals, and estimate the pulse rate (PR) and peripheral capillary oxygen saturation (SpO2). We propose a PR and SpO2 measurement algorithm with and without the motion artifact. We consider three types of motion artifacts with our acquired clean PPG signal from our proposed electronic circuit. To evaluate our proposed algorithm, we measured the accuracy of our estimated SpO2 and PR. To evaluate the quality of our estimated PR (bpm) and SpO2 (%) with and without the finger motion artifact, we used the quality evaluation metrics: mean absolute percentage error (MAPE), mean absolute error (MAE), and reference closeness factor (RCF). Without the finger motion condition, we found that our proposed wearable PO device achieved an average 2.81% MAPE, 2.08 bpm MAE, 0.97 RCF, and 98.96% SpO2 accuracy. With a finger motion, the proposed wearable PO device achieved an average 4.5% MAPE, 3.66 bpm MAE, 0.96 RCF, and 96.88% SpO2 accuracy. We also show a comparison of our proposed PO device with a commercial Fingertip PO (FPO) device. We have found that our proposed PO device performs better than the commercial FPO device under finger motion conditions. To demonstrate the implementation of our wearable PO, we developed a smartphone app to allow the PO device to share PPG signals, PR, and SpO2 through Bluetooth communication. We also show the possible applications of our proposed PO as a wearable, hand-held PO device, and a PPG signal acquisition system.

Highlights

  • Stroke and cardiovascular diseases are the main causes of human disability and death [1,2] and can seriously affect the elderly populations

  • We considered three types of finger motion to develop our Pulse rate (PR) measurement algorithm for finger motion

  • We show the calibrated curve and equation for the SpO2 measured using our proposed acquisition of clean PPG signals

Read more

Summary

Introduction

Stroke and cardiovascular diseases are the main causes of human disability and death [1,2] and can seriously affect the elderly populations. For the continuous monitoring of these patients, prolonged care is necessary, which poses unique challenges worldwide. Pulse rate (PR) and peripheral capillary oxygen saturation (SpO2 ) are the most popular physiological parameters for the continuous medical monitoring of patients. These parameters vitally enable the continuous monitoring of heart activities. Wearable medical devices offer some advantages in the continuous monitoring of the health condition of the patients. These devices can provide non-invasive, low-powered, and convenient ways

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call