Abstract

In traditional hand function assessment, patients and physicians always need to accomplish complex activities and rating tasks. This paper proposes a novel wearable glove system for hand function assessment. A sensing system consisting of 12 nine-axis inertial and magnetic unit (IMMU) sensors is used to obtain the acceleration, angular velocity, and geomagnetic orientation of human hand movements. A complementary filter algorithm is applied to calculate the angles of joints after sensor calibration. A virtual hand model is also developed to map with the glove system in the Unity platform. The experimental results show that this glove system can capture and reproduce human hand motions with high accuracy. This smart glove system is expected to reduce the complexity and time consumption of hand kinematics assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.