Abstract
The pre-conceptual design of the DEMOnstration reactors has already started and several tokamak configurations have to be tested to find the best design by exploring different design parameters. Fast simulations involving the different components behavior must be performed. Within the European framework, SYCOMORE (SYstem COde for MOdelling tokamak REactor) is developed by CEA for this purpose. The Breeding Blanket (BB) facing the plasma is a key component in DEMO ensuring tritium self-sufficiency, shielding against neutrons and heat extraction for electricity production. Several BB concepts are being studied, among which the Water Cooled Lithium Lead (WCLL) one. SYCOMORE includes several specific modules in Python linked together, one of which has been developed to define a suitable design of the WCLL Breeding Blanket and is presented in this paper.The method to define automatically the WCLL First Wall (FW) design using analytical design formulae starting from thermo-hydraulic and thermo-mechanical considerations as well as design criteria coming from Codes & Standards (C&S) is presented. Furthermore WCLL FW design obtained with SYCOMORE is compared to Finite Elements (FE) analyses of the DEMO WCLL BB.Finally, a coupling between thermo-mechanics and neutronics is implemented, several iterations are necessary to obtain a converged design. Neutronic block evaluates the radial build, the BB tritium production, and the nuclear heating in the FW and the Breeding Zone (used by thermo-mechanical block). Thermo-mechanical module gives the design data (FW thickness, compositions, etc.) to the neutronic block.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.