Abstract

The present study aimed to address the potential of ground-based food and sensory research in representing the isolated and confined environment of a spacecraft. Virtual Reality (VR) technology was employed to simulate the experience of perceived isolation and confinement within space. The VR simulation emulates the International Space Station in low Earth orbit, comprising interconnected space modules equipped with integrated sensory analysis tools for evaluating food odor cues within the VR environment (‘Food in Space’, Supplementary A). In our first experiment, 44 healthy participants were asked to rate the intensity of three commercially available food odor samples (vanilla, lemon, almond) and a control on a 5-point Likert scale, in the neutral sitting posture, a NASA-Neutral sitting posture (mimicking a ‘microgravity’ posture using a commercial ‘Zero-gravity’ outdoor chair set at 122–124°), and within the VR simulation. This first phase revealed large individual variations across odors. Importantly, there were no significant differences for most odors when the odor perceptions of the three odors between the neutral and ‘microgravity’ neutral postures were compared. However, there were significant differences for select odors between VR and both the postures (Supplementary B) indicating that the VR ‘Food in Space’ environment may impact odor perception differently across odors. A second pilot study with 16 participants evaluated four food odor samples (vanilla, lemon, almond, eucalyptus) and a control across different contexts (baseline control, virtual reality) and time points during virtual reality. The emotional responses during the experiences were also evaluated explicitly using validated scales such as the Self-Assessment Manikin (SAM) and the short-formed Positive and Negative Affect Schedule (PANAS-SF). This second phase revealed that participants' descriptions of their emotional responses underwent changes before and after their virtual reality experiences. Terms used were generally more neutral and positive before VR (e.g., ‘interested’, ‘attentive’) and more negative after spending an average of 9 min 35 s in virtual reality (e.g., ‘nervous’, ‘guilty’). There was also variation across participants in terms of emotional responses and odor intensity perception (blank control) especially after spending a longer time in the virtual reality environment (Supplementary C). This exploratory study underscores the potential of using VR technology as a space analog to simulate context for studying sensory responses in relation to food as the current data matches anecdotal eating behavior of space travelers. Personal variation in odor perception should also be taken into consideration, especially in creating personalized meal plans for space applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.