Abstract
An ideal malaria vaccine would prevent disease and reduce transmission by targeting several developmental stages of human malaria parasites. To be cost-effective, a modular antigen delivery technology is required for the development of such a multivalent subunit vaccine. In this review, we summarize and discuss a strategy to develop synthetic peptidomimetics of key malaria target antigens for inclusion in a multivalent malaria subunit vaccine based on immunopotentiating reconstituted influenza virosomes. Clinical testing of a bivalent virosomal formulation incorporating two structurally optimized peptidomimetics has demonstrated safety, immunogenicity and pilot efficacy. While this clinical validation supports the concept of using peptide-loaded virosomes for vaccination in humans, it is assumed that additional antigens will have to be added to the bivalent formulation to generate a highly effective malaria vaccine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.